On the complexity of the representation of functions of many-valued logics by polarized polynomials
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 48-53
The notion of a polarised polynomial form is extended to the case of multiple-valued logic functions. We introduce the Shannon functions of weight and length of polarised polynomial forms of multiple-valued logic functions and give some bounds for them.This research was supported by the Russian Foundation for Basic Research, grant 00–01–00351.
@article{DM_2002_14_2_a4,
author = {S. N. Selezneva},
title = {On the complexity of the representation of functions of many-valued logics by polarized polynomials},
journal = {Diskretnaya Matematika},
pages = {48--53},
year = {2002},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a4/}
}
S. N. Selezneva. On the complexity of the representation of functions of many-valued logics by polarized polynomials. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 48-53. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a4/
[1] Sasao T., Besslich P., “On the complexity of mod-2 sum PLA's”, IEEE Trans. Comput., 39:2 (1990), 262–266 | DOI | MR
[2] Suprun V. P., “Slozhnost bulevykh funktsii v klasse kanonicheskikh polyarizovannykh polinomov”, Diskretnaya matematika, 5:2 (1993), 111–115 | Zbl
[3] Peryazev N. A., “Slozhnost bulevykh funktsii v klasse polinomialnykh polyarizovannykh form”, Algebra i logika, 34:3 (1995), 323–326 | MR | Zbl
[4] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 51, 1958, 5–142 | Zbl