On the inheritance of properties of Boolean functions under restrictions
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 9-19
For a property $\mathcal P$ of Boolean functions, a Boolean function $f(x)$, $x\in V_n$, and a subspace $H$ of the space $V_n$ of all $n$-tuples of zeros and ones, we consider the set of all restrictions of the Boolean function $f(x)$ onto the cosets of $V_n$ with respect to $H$. If the function $f(x)$ itself and all its $2^{n-\dim H}$ restrictions possess the property $\mathcal P$, we say that the property $\mathcal P$ is inherited under the restrictions of the Boolean function $f(x)$ and consider it as a new derived property. In this paper, this approach is applied to the following property of Boolean functions: the value $\hat f(\alpha)/2^n$, where $\hat f(\alpha)$ is the Walsh–Hadamard coefficient, is fixed; the corresponding derived property is called the $(H,\alpha)$-stability. We give convenient criteria for $(H,\alpha)$-stability in terms of zeros of the Walsh–Hadamard coefficients, and establish relations between the $(H,\alpha)$-stability, correlation immunity, and $m$-resiliency. This research was supported by the Russian Foundation for Basic Research, grants 99–01–00929 and 99–01–00941.
@article{DM_2002_14_2_a1,
author = {O. A. Logachev and A. A. Sal'nikov and V. V. Yashchenko},
title = {On the inheritance of properties of {Boolean} functions under restrictions},
journal = {Diskretnaya Matematika},
pages = {9--19},
year = {2002},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a1/}
}
TY - JOUR AU - O. A. Logachev AU - A. A. Sal'nikov AU - V. V. Yashchenko TI - On the inheritance of properties of Boolean functions under restrictions JO - Diskretnaya Matematika PY - 2002 SP - 9 EP - 19 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/DM_2002_14_2_a1/ LA - ru ID - DM_2002_14_2_a1 ER -
O. A. Logachev; A. A. Sal'nikov; V. V. Yashchenko. On the inheritance of properties of Boolean functions under restrictions. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 9-19. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a1/
[1] Kuznetsov Yu. V., Shkapin S. A., “Kody Rida–Mallepa (obzop publikatsii)”, Matem. vopposy kibepn., 6, 1996, 5–50
[2] Tarannikov Yu. V., Diskretnaya matematika i ee prilozheniya, Izd-vo MGU, Moskva, 2001
[3] Siegentaler T., “Correlation-immunity of nonlinear combining functions for cryptographic applications”, IEEE Trans. Inform. Theory, 30:5 (1984), 776–780 | DOI | MR