Clones determined by alternating monoids
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the symmetric semigroup $\mathcal T_k$ of all mappings from the set $E_k$ into $E_k$, $k\geq3$, we consider alternating monoids, that is, monoids which contain all even permutations on $E_k$. For each monoid $T\in\mathcal T_k$, we define the set of all functions of $P_k$ which preserve graphs of all permutations of $T$ (the clone determined by the monoid $T$). We describe all clones determined by alternating monoids. The research was supported by the Russian Foundation for Basic Research, grant 00–01–00351.
@article{DM_2002_14_2_a0,
     author = {S. S. Marchenkov},
     title = {Clones determined by alternating monoids},
     journal = {Diskretnaya Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Clones determined by alternating monoids
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 3
EP  - 8
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/
LA  - ru
ID  - DM_2002_14_2_a0
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Clones determined by alternating monoids
%J Diskretnaya Matematika
%D 2002
%P 3-8
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/
%G ru
%F DM_2002_14_2_a0
S. S. Marchenkov. Clones determined by alternating monoids. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/

[1] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl

[2] Marczewski E., Homogeneous algebras and homogeneous operations, Fund. Math., 56 (1964), 81–103 | MR | Zbl

[3] Marchenkov S. S., “O klassifikatsii algebr so znakoperemennoi gruppoi avtomorfizmov”, Dokl. AN SSSR, 265:3 (1982), 533–536 | MR | Zbl

[4] Marchenkov S. S., “Klassifikatsiya algebr so znakoperemennoi gruppoi avtomorfizmov”, Matematicheskie problemy kibernetiki, 2, 1989, 100–122 | MR | Zbl

[5] Machida H., Miyakawa M., Rosenberg I. G., “Relations between clones and full monoids”, Proc. 31 Int. Symp. Multiple-Valued Logic, Warsaw, 2001, 279–284

[6] Marchenkov S. S., “O zamknutykh klassakh samodvoistvennykh funktsii mnogoznachnoi logiki”, Problemy kibern., 36 (1979), 5–22 | MR | Zbl

[7] Marchenkov S. S., “Ob odnorodnykh algebrakh.”, Dokl. AN SSSR, 256:4 (1981), 787–790 | MR | Zbl

[8] Marchenkov S. S., “Odnorodnye algebry”, Problemy kibern., 39 (1982), 85–106 | MR | Zbl

[9] Nguen Van Khoa, “O semeistvakh zamknutykh klassov $k$-znachnoi logiki, sokhranyaemykh vsemi avtomorfizmami”, Diskretnaya matematika, 5:4 (1993), 87–108 | MR | Zbl

[10] Nguen Van Khoa, “Opisanie zamknutykh klassov, sokhranyaemykh vsemi vnutrennimi avtomorfizmami”, Dokl. AN Belarusi, 38:3 (1994), 16–19 | MR | Zbl

[11] Marchenkov S. S., Demetrovich Ya., Khannak L., “O zamknutykh klassakh samodvoistvennykh funktsii v $P_3$”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, 34 (1980), 38–73 | MR | Zbl

[12] Demetrovics J., Hannak L., Marchenkov S. S., “On closed classes of selfdual functions”, Colloquia mathematica societatis Janos Bolyai, 28 (1979), 183–189 | MR

[13] Demetrovics J., Hannak L., Marchenkov S. S., “Some remarks on the structure of $P_3$”, C. R. Math. Rep. Acad. Sci. Canada, 11:4 (1980), 215–219 | MR

[14] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, Moskva, 1986 | MR

[15] Bodnarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10 ; No 5, 1–9 | MR | Zbl

[16] Marchenkov S. S., “O zamknutykh klassakh samodvoistvennykh funktsii mnogoznachnoi logiki II”, Problemy kibern., 40 (1983), 261–266 | MR | Zbl

[17] Marchenkov S. S., “$A$-zamknutye klassy mnogoznachnoi logiki, soderzhaschie konstanty”, Diskretnaya matematika, 10:3 (1998), 10–26 | Zbl

[18] Marchenkov S. S., “$A$-klassifikatsiya funktsii mnogoznachnoi logiki”, Dokl. RAN, 366:4 (1999), 455–457 | MR | Zbl