Clones determined by alternating monoids
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

In the symmetric semigroup $\mathcal T_k$ of all mappings from the set $E_k$ into $E_k$, $k\geq3$, we consider alternating monoids, that is, monoids which contain all even permutations on $E_k$. For each monoid $T\in\mathcal T_k$, we define the set of all functions of $P_k$ which preserve graphs of all permutations of $T$ (the clone determined by the monoid $T$). We describe all clones determined by alternating monoids. The research was supported by the Russian Foundation for Basic Research, grant 00–01–00351.
@article{DM_2002_14_2_a0,
     author = {S. S. Marchenkov},
     title = {Clones determined by alternating monoids},
     journal = {Diskretnaya Matematika},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Clones determined by alternating monoids
JO  - Diskretnaya Matematika
PY  - 2002
SP  - 3
EP  - 8
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/
LA  - ru
ID  - DM_2002_14_2_a0
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Clones determined by alternating monoids
%J Diskretnaya Matematika
%D 2002
%P 3-8
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/
%G ru
%F DM_2002_14_2_a0
S. S. Marchenkov. Clones determined by alternating monoids. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/