Clones determined by alternating monoids
Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
In the symmetric semigroup $\mathcal T_k$ of all mappings from the set $E_k$ into $E_k$, $k\geq3$, we consider alternating monoids, that is, monoids which contain all even permutations on $E_k$. For each monoid
$T\in\mathcal T_k$, we define the set of all functions of $P_k$ which preserve graphs of all permutations of $T$ (the clone determined by the monoid $T$). We describe all clones determined by alternating monoids.
The research was supported by the Russian Foundation for Basic Research, grant
00–01–00351.
@article{DM_2002_14_2_a0,
author = {S. S. Marchenkov},
title = {Clones determined by alternating monoids},
journal = {Diskretnaya Matematika},
pages = {3--8},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/}
}
S. S. Marchenkov. Clones determined by alternating monoids. Diskretnaya Matematika, Tome 14 (2002) no. 2, pp. 3-8. http://geodesic.mathdoc.fr/item/DM_2002_14_2_a0/