On the functional complexity of a two-dimensional interval search problem
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 114-141
Voir la notice de l'article provenant de la source Math-Net.Ru
We suggest a modification of the Bentley–Maurer algorithm which solves a two-dimensional interval search problem. This modification allows us to decrease the initially logarithmic average search time to constant, retaining the logarithmic worst-case search time. This algorithm depends on a parameter whose change results in variation of the needed memory from $\mathcal O(k^3)$ to $\mathcal O(k\log k)$;
the average search time (without the time needed to output the answer) varies from $\mathcal O(1)$ to
$\mathcal O(\log k)$. In particular, for any $\varepsilon>0$ and available memory
$\mathcal O(k^{1+\varepsilon})$ the average search time is $\mathcal O(1)$.
On the basis of these results, we give upper bounds for the functional complexity
of a two-dimensional interval search problem.
This research was supported by the Russian Foundation for Basic Research,
grants 98–01–00130, 01–01–00748.
@article{DM_2002_14_1_a8,
author = {\`E. \`E. Gasanov and I. V. Kuznetsova},
title = {On the functional complexity of a two-dimensional interval search problem},
journal = {Diskretnaya Matematika},
pages = {114--141},
publisher = {mathdoc},
volume = {14},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a8/}
}
TY - JOUR AU - È. È. Gasanov AU - I. V. Kuznetsova TI - On the functional complexity of a two-dimensional interval search problem JO - Diskretnaya Matematika PY - 2002 SP - 114 EP - 141 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2002_14_1_a8/ LA - ru ID - DM_2002_14_1_a8 ER -
È. È. Gasanov; I. V. Kuznetsova. On the functional complexity of a two-dimensional interval search problem. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 114-141. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a8/