Bent functions from a finite abelian group into a finite abelian group
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 99-113
We introduce the notions of an absolutely non-homomorphic function, a minimal function (farthest from homomorphisms) and a bent function, and prove that the class of bent functions coincides with the class of absolutely non-homomorphic functions, a function is uniquely determined by the distances to homomorphisms with shifts, and that in the primary case the bent functions are absolutely minimal.
@article{DM_2002_14_1_a7,
author = {V. I. Solodovnikov},
title = {Bent functions from a finite abelian group into a finite abelian group},
journal = {Diskretnaya Matematika},
pages = {99--113},
year = {2002},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a7/}
}
V. I. Solodovnikov. Bent functions from a finite abelian group into a finite abelian group. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 99-113. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a7/
[1] Ambrosimov A. S., “Svoistva bent-funktsii $q$-znachnoi logiki nad konechnymi polyami”, Diskretnaya matematika, 6:3 (1994), 50–60 | MR | Zbl
[2] Logachev O. S., Salnikov A. A., Yaschenko V. V., “Bent-funktsii na konechnoi abelevoi gruppe”, Diskretnaya matematika, 9:4 (1997), 3–20 | MR | Zbl
[3] Golomb S. W., “On the classification of Boolean functions”, IRE Trans. Circuit Theory, 1:6 (1959), 10–27
[4] Rothaus O. S., “On “bent” functions”, J. Comb. Theory, Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl