On conditions for the efficiency of a solution of a multicriterial discrete problem
Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 17-29
For a wide class of multicriteria (vector) optimisation problems with a finite set of vector constraints, basing on the additive method of aggregating special monotone functions of partial criteria, we obtain necessary and sufficient conditions of efficiency (Pareto-optimality) of a solution.This research was supported by the State Program of Basic Research of Republic Belarus ‘Algorithm.’
@article{DM_2002_14_1_a2,
author = {V. A. Emelichev and A. V. Pashkevich},
title = {On conditions for the efficiency of a solution of a multicriterial discrete problem},
journal = {Diskretnaya Matematika},
pages = {17--29},
year = {2002},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2002_14_1_a2/}
}
V. A. Emelichev; A. V. Pashkevich. On conditions for the efficiency of a solution of a multicriterial discrete problem. Diskretnaya Matematika, Tome 14 (2002) no. 1, pp. 17-29. http://geodesic.mathdoc.fr/item/DM_2002_14_1_a2/
[1] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, Moskva, 1982 | MR | Zbl
[2] Dubov Yu. A., Travkin S. I., Yakimets V. N., Mnogokriterialnye modeli formirovaniya i vybora variantov sistem, Nauka, Moskva, 1986 | MR
[3] Emelichev V. A., Yanushkevich O. A., “Usloviya Pareto-optimalnosti v diskretnykh vektornykh zadachakh optimizatsii”, Diskretnaya matematika, 9:3 (1997), 154–160
[4] Emelichev V. A., Pashkevich A. V., Yanushkevich O. A., “Usloviya effektivnosti resheniya vektornoi zadachi diskretnoi optimizatsii”, Diskretnaya matematika, 11:1 (1999), 140–145 | Zbl