On the number of metric functions of a Boolean cube
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 116-121
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain the limit of the $2^n$th root (asymptotics of the logarithm) of the number of pseudo-Boolean functions of $n$ variables that map adjacent vertices of the Boolean cube into adjacent vertices of an arbitrary graph, is obtained. This result is extended to mappings of vertices of Cartesian products of arbitrary graphs.
This research was supported by the Russian Foundation for Basic Research, grants 00–01–00351 and 01–01–00266.
@article{DM_2001_13_4_a7,
author = {A. A. Voronenko},
title = {On the number of metric functions of a {Boolean} cube},
journal = {Diskretnaya Matematika},
pages = {116--121},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a7/}
}
A. A. Voronenko. On the number of metric functions of a Boolean cube. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 116-121. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a7/