A~numerical characteristic of the Sylvester matrix
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 92-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we introduce a characteristic of the Sylvester matrix and find its explicit values. We describe some applications of the introduced characteristic.
@article{DM_2001_13_4_a5,
     author = {V. V. Kvaratskheliya},
     title = {A~numerical characteristic of the {Sylvester} matrix},
     journal = {Diskretnaya Matematika},
     pages = {92--98},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a5/}
}
TY  - JOUR
AU  - V. V. Kvaratskheliya
TI  - A~numerical characteristic of the Sylvester matrix
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 92
EP  - 98
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a5/
LA  - ru
ID  - DM_2001_13_4_a5
ER  - 
%0 Journal Article
%A V. V. Kvaratskheliya
%T A~numerical characteristic of the Sylvester matrix
%J Diskretnaya Matematika
%D 2001
%P 92-98
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a5/
%G ru
%F DM_2001_13_4_a5
V. V. Kvaratskheliya. A~numerical characteristic of the Sylvester matrix. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 92-98. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a5/

[1] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979

[2] Vakhania N., Kvaratskhelia V., “Absolute and unconditional convergence in $l_1$”, Bull. Georgian Acad. Sci., 160:2 (1999), 201–203 | MR | Zbl

[3] Vakhania N., Kvaratskhelia V., “On a criterion for unconditional convergence of Hadamard series in the spaces $l_p$, $1\le p\infty$”, Bull. Georgian Acad. Sci., 162:2 (2000) | MR | Zbl

[4] Kholl M., Kombinatorika, Mir, Moskva, 1970 | MR

[5] Vakhania N., Kvaratskhelia V., “Convergence of Sylvester series in Banach space $l_p$, $1\le p\infty$”, Bull. Georgian Acad. Sci., 163:3 (2001) | MR | Zbl