A numerical characteristic of the Sylvester matrix
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 92-98
In the paper, we introduce a characteristic of the Sylvester matrix and find its explicit values. We describe some applications of the introduced characteristic.
@article{DM_2001_13_4_a5,
author = {V. V. Kvaratskheliya},
title = {A~numerical characteristic of the {Sylvester} matrix},
journal = {Diskretnaya Matematika},
pages = {92--98},
year = {2001},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a5/}
}
V. V. Kvaratskheliya. A numerical characteristic of the Sylvester matrix. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 92-98. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a5/
[1] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, Moskva, 1979
[2] Vakhania N., Kvaratskhelia V., “Absolute and unconditional convergence in $l_1$”, Bull. Georgian Acad. Sci., 160:2 (1999), 201–203 | MR | Zbl
[3] Vakhania N., Kvaratskhelia V., “On a criterion for unconditional convergence of Hadamard series in the spaces $l_p$, $1\le p\infty$”, Bull. Georgian Acad. Sci., 162:2 (2000) | MR | Zbl
[4] Kholl M., Kombinatorika, Mir, Moskva, 1970 | MR
[5] Vakhania N., Kvaratskhelia V., “Convergence of Sylvester series in Banach space $l_p$, $1\le p\infty$”, Bull. Georgian Acad. Sci., 163:3 (2001) | MR | Zbl