A~functional limit theorem for a critical branching process in a random environment
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 73-91
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\{\xi_n\}$ be a critical branching process in a random environment, and let $m_n$ be the mathematical expectation of $\xi_n$ under the condition that the random environment is fixed. We prove a theorem on convergence of the sequence of branching processes $\{\xi_{[nt]}/m_{[nt]},\ t\in(0,1] \mid \xi_n>0\}$ as $n\to\infty$ in distribution in the corresponding functional space. This theorem extends the earlier result of the author proved under the assumption that the generating function of the number of offspring is linear-fractional.
@article{DM_2001_13_4_a4,
author = {V. I. Afanasyev},
title = {A~functional limit theorem for a critical branching process in a random environment},
journal = {Diskretnaya Matematika},
pages = {73--91},
publisher = {mathdoc},
volume = {13},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a4/}
}
V. I. Afanasyev. A~functional limit theorem for a critical branching process in a random environment. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 73-91. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a4/