Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2001_13_4_a4, author = {V. I. Afanasyev}, title = {A~functional limit theorem for a critical branching process in a random environment}, journal = {Diskretnaya Matematika}, pages = {73--91}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a4/} }
V. I. Afanasyev. A~functional limit theorem for a critical branching process in a random environment. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 73-91. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a4/
[1] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 9:3 (1997), 52–67 | MR
[2] Afanasev V. I., “Predelnye teoremy dlya umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 10:1 (1998), 141–157 | MR
[3] Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 13:1 (2001), 132–157
[4] Kozlov M. V., Teoriya veroyatnostei i ee primeneniya, 21, no. 4, 1976 | MR | Zbl
[5] Afanasev V. I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 5:1 (1993), 45–58 | MR
[6] Borovkov K. A., Vatutin V. A., “Reduced critical branching processes in random environment”, Stoch. Proc. Appl., 71 (1997), 225–240 | DOI | MR | Zbl
[7] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1977 | MR
[8] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatnostei i ee primeneniya, 45:3 (2000), 607–615 | MR | Zbl