On the distribution of the number of cycles of a given length in the class of
Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 60-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the set of all permutations of degree $n$ with $N$ cycles. We assume that the uniform distribution is defined on this set and consider the random variable equal to the number of cycles of a given length in the random permutation from this set. We obtain the asymptotic values of the mathematical expectation and the variance of this random variable and prove the limit theorems on the convergence to the Poisson and the Gaussian distributions as $n,N\to\infty$. We give the asymptotic expansions for the number of permutations of degree $n$ with $N$ cycles among which there are exactly $k=k(n,N)$ of a given length.
@article{DM_2001_13_4_a3,
     author = {A. N. Timashev},
     title = {On the distribution of the number of cycles of a given length in the class of},
     journal = {Diskretnaya Matematika},
     pages = {60--72},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_4_a3/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - On the distribution of the number of cycles of a given length in the class of
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 60
EP  - 72
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_4_a3/
LA  - ru
ID  - DM_2001_13_4_a3
ER  - 
%0 Journal Article
%A A. N. Timashev
%T On the distribution of the number of cycles of a given length in the class of
%J Diskretnaya Matematika
%D 2001
%P 60-72
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_4_a3/
%G ru
%F DM_2001_13_4_a3
A. N. Timashev. On the distribution of the number of cycles of a given length in the class of. Diskretnaya Matematika, Tome 13 (2001) no. 4, pp. 60-72. http://geodesic.mathdoc.fr/item/DM_2001_13_4_a3/

[1] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, Moskva, 1962

[2] Kolchin V. F., Sevastyanov B. A., Chistyakov V. P., Sluchainye razmescheniya, Nauka, Moskva, 1976 | MR | Zbl

[3] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, ser. matem., 8:1 (1944), 3–48 | MR | Zbl

[4] Kolchin V. F., Sluchainye otobrazheniya, Nauka, Moskva, 1984 | MR

[5] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “Asimptoticheskaya normalnost nekotorykh velichin, svyazannykh s tsiklovoi strukturoi sluchainykh podstanovok”, Matem. sb., 99:1 (1976), 121–133 | MR | Zbl

[6] Bolotnikov Yu. V., Sachkov V. N., Tarakanov V. E., “O nekotorykh klassakh sluchainykh velichin na tsiklakh podstanovok”, Matem. sb., 108:1 (1979), 91–104 | MR | Zbl

[7] Tarakanov V. E., Chistyakov V. P., “O tsiklovoi strukture sluchainykh podstanovok”, Matem. sb., 96:4 (1975), 594–600 | MR | Zbl

[8] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, Moskva, 1972 | MR

[9] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, 1962, Fizmatlit, Moskva | MR

[10] Pavlov A. I., “O chisle i tsiklovoi strukture podstanovok nekotorykh klassov”, Matem. sb., 124:4 (1984), 536–556 | MR | Zbl

[11] Kolchin V. F., Chistyakov V. P., “O tsiklovoi strukture sluchainykh podstanovok”, Matem. zametki, 18:6 (1975), 929–938 | MR | Zbl

[12] Kolchin V. F., “Odna zadacha o razmeschenii chastits po yacheikam i tsikly sluchainykh podstanovok”, Teoriya veroyatn. i ee primeneniya, 16:1 (1971), 67–82 | Zbl

[13] Good I. J., “An asymptotic formula for the differences of the powers at zero”, Ann. Math. Statist., 32 (1961), 249–256 | DOI | MR | Zbl

[14] Timashëv A. N., “Ob asimptoticheskikh razlozheniyakh dlya chisel Stirlinga pervogo i vtorogo roda”, Diskretnaya matematika, 10:3 (1998), 148–159 | MR

[15] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1977

[16] Riekstynsh E., Otsenki ostatkov v asimptoticheskikh razlozheniyakh, Riga, Zinatne, 1986 | MR