On the nilpotent $\pi$-length of a finite $\pi$-solvable group
Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 145-152

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates for the nilpotent $\pi$-length of a finite $\pi$-solvable group with the nilpotent commutant of the Hall $\pi$-subgroup are obtained. A connection between the nilpotent $\pi$-length of a finite $\pi$-solvable group and the derivative length of its Hall $\pi$-subgroup of an odd order is established.
@article{DM_2001_13_3_a9,
     author = {V. S. Monakhov and O. A. Shpyrko},
     title = {On the nilpotent $\pi$-length of a finite $\pi$-solvable group},
     journal = {Diskretnaya Matematika},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_3_a9/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - O. A. Shpyrko
TI  - On the nilpotent $\pi$-length of a finite $\pi$-solvable group
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 145
EP  - 152
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_3_a9/
LA  - ru
ID  - DM_2001_13_3_a9
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A O. A. Shpyrko
%T On the nilpotent $\pi$-length of a finite $\pi$-solvable group
%J Diskretnaya Matematika
%D 2001
%P 145-152
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_3_a9/
%G ru
%F DM_2001_13_3_a9
V. S. Monakhov; O. A. Shpyrko. On the nilpotent $\pi$-length of a finite $\pi$-solvable group. Diskretnaya Matematika, Tome 13 (2001) no. 3, pp. 145-152. http://geodesic.mathdoc.fr/item/DM_2001_13_3_a9/