On some properties of polynomials over finite fields
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 111-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider polynomials over a finite field. The polynomials of one variables are called transformations. We investigate the polynomials of several variables which do not change under replacement of each variables by some transformation. Such polynomials are called invariant with respect to transformations of variables. We investigate the form of the polynomials invariant with respect to connected transformations. A transformation is called connected if for any two elements $a_1$ and $a_2$ of the field there exist integers $m_1$ and $m_2$ such that the $m_1$-fold iteration of the transformation of $a_1$ coincides with the $m_2$-fold iteration of the transformation of $a_2$. We consider some integer-valued characteristics of polynomials of several variables, namely, the rank and the weight. We prove the following necessary property of polynomials invariant with respect to connected transformations: if the integers $r$ and $w$ are, respectively, the rank and the weight of a polynomial invariant with respect to connected transformations, then $w^q\ge2^r$, where $q$ is a constant depending on transformations and does not exceed the number of elements of the field.
@article{DM_2001_13_2_a5,
     author = {S. N. Selezneva},
     title = {On some properties of polynomials over finite fields},
     journal = {Diskretnaya Matematika},
     pages = {111--119},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a5/}
}
TY  - JOUR
AU  - S. N. Selezneva
TI  - On some properties of polynomials over finite fields
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 111
EP  - 119
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_2_a5/
LA  - ru
ID  - DM_2001_13_2_a5
ER  - 
%0 Journal Article
%A S. N. Selezneva
%T On some properties of polynomials over finite fields
%J Diskretnaya Matematika
%D 2001
%P 111-119
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_2_a5/
%G ru
%F DM_2001_13_2_a5
S. N. Selezneva. On some properties of polynomials over finite fields. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 111-119. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a5/

[1] Lidl R., Niderraiter G., Konechnye polya, Mir, Moskva, 1988 | Zbl

[2] van der Varden B. L., Algebra, Nauka, Moskva, 1979 | MR

[3] Zykov A. A., Osnovy teorii grafov, Nauka, Moskva, 1987 | MR | Zbl