Parametrization of solutions of the equation $x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1$ in a free group
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 35-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite parametrisation of the set of all solutions of the equation $$ x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1 $$ in a finite group is given. This equation is closely related to the Poincare conjecture. The parametrising functions depend on word variables, natural variables, and variables, whose values are sequences of natural variables.This research was supported by the Russian Foundation of Basic Research, grant 01–01–00027.
@article{DM_2001_13_2_a2,
     author = {G. S. Makanin},
     title = {Parametrization of solutions of the equation $x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1$ in a free group},
     journal = {Diskretnaya Matematika},
     pages = {35--88},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a2/}
}
TY  - JOUR
AU  - G. S. Makanin
TI  - Parametrization of solutions of the equation $x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1$ in a free group
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 35
EP  - 88
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_2_a2/
LA  - ru
ID  - DM_2001_13_2_a2
ER  - 
%0 Journal Article
%A G. S. Makanin
%T Parametrization of solutions of the equation $x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1$ in a free group
%J Diskretnaya Matematika
%D 2001
%P 35-88
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_2_a2/
%G ru
%F DM_2001_13_2_a2
G. S. Makanin. Parametrization of solutions of the equation $x^{-1}y^{-1}xyz^{-1}v^{-1}zv=1$ in a free group. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 35-88. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a2/

[1] Seifert H., Threlfall W., Lehrbuch der Topologie, Teubner, Leipzig, 1934 | Zbl

[2] Stallings J. R., “On the recursiveness of sets of presentations of 3-manifold groups”, Fund. Math., 1962 vol 51, 191–194 | MR | Zbl

[3] Jaco W., “Heergaard splitting homomorphisms”, Trans. Amer. Math. Soc., 144 (1969), 365–379 | DOI | MR | Zbl