Codes on fibre products of Artin--Schreier curves
Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to construct a new family of smooth projective curves over a finite field $F_q$ with many $F_q$-rational points using fibre products of Artin–Schreier curves. We show that for any curve $X$ in this family the ratio $g(X)/N_q(X)$, where $g(X)$ is the genus and $N_q(X)$ is the number of $F_q$-rational points, is small enough to get geometric Goppa codes with good parameters. This paper extends the results of Stepanov and Özbudak concerning the construction of long codes.
@article{DM_2001_13_2_a0,
     author = {S. A. Stepanov and M. Kh. Shalalfekh},
     title = {Codes on fibre products of {Artin--Schreier} curves},
     journal = {Diskretnaya Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_2_a0/}
}
TY  - JOUR
AU  - S. A. Stepanov
AU  - M. Kh. Shalalfekh
TI  - Codes on fibre products of Artin--Schreier curves
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 3
EP  - 13
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_2_a0/
LA  - ru
ID  - DM_2001_13_2_a0
ER  - 
%0 Journal Article
%A S. A. Stepanov
%A M. Kh. Shalalfekh
%T Codes on fibre products of Artin--Schreier curves
%J Diskretnaya Matematika
%D 2001
%P 3-13
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_2_a0/
%G ru
%F DM_2001_13_2_a0
S. A. Stepanov; M. Kh. Shalalfekh. Codes on fibre products of Artin--Schreier curves. Diskretnaya Matematika, Tome 13 (2001) no. 2, pp. 3-13. http://geodesic.mathdoc.fr/item/DM_2001_13_2_a0/

[1] Garcia A., Stichtenoth H., “Elementary abelian $p$-extensions of algebraic function fields”, Manuscr. Math., 72 (1991), 67–79 | DOI | MR | Zbl

[2] Goppa V. G., “Codes on algebraic curves”, Soviet Math. Dokl., 24 (1981), 170–172 | MR | Zbl

[3] Lachaud G., “Artin–Schreier curves, exponential sums, and the Carlitz–Uchiyama bound for geometric codes”, J. Number Theory, 39 (1991), 18–40 | DOI | MR | Zbl

[4] Özbudak F., “Codes on fibre products of some Kummer coverings”, Finite Fields and their Appl., 5 (1999), 188–205 | DOI | MR | Zbl

[5] Stepanov S. A., Arifmetika algebraicheskikh krivykh, Nauka, Moskva, 1971 | MR

[6] Stepanov S. A., Codes on Algebraic Curves., Plenum, New York, 1999 | MR | Zbl

[7] Stepanov S. A., “Kody na rassloennykh proizvedeniyakh giperellipticheskikh krivykh”, Diskretnaya matematika, 9:1 (1997), 83–94 | MR

[8] Stepanov S. A., Ozbudak F., “Rassloennye proizvedeniya gipergeometricheskikh krivykh i geometricheskie kody Goppy”, Diskretnaya matematika, 9:3 (1997), 36–42 | MR | Zbl

[9] G. van der Geer, M. van der Vlugt, How to construct curves over finite fields with many points, , 1995 arXiv: math.AG./9511005 | MR

[10] Xing C., Stichtenoth H., “The genus of maximal function fields”, Manuscr. Math., 86 (1955), 217–224 | DOI | MR