Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment
Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 132-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_n\}$ be an intermediately subcritical branching process in a random environment with linear-fractional generating functions, and let $m_n^+$ be the conditional mathematical expectation of $\xi_n$ under the condition that the random environment is fixed and $\xi_n>0$. We establish the convergence of the sequence of processes $\{\xi_{[nt]}/m^+_{[nt]},\ t\in(0,1)\mid \xi_n>\nobreak0\}$ as $n\to\infty$ in the sense of finite-dimensional distributions. As a corollary, we establish the convergence of the sequence of processes $\{\ln\xi_{[nt]}/\ \sqrt n,\ t\in[0,1]\mid \xi_n>0\}$ in the sense of finite-dimensional distributions to a process expressed in terms of the Brownian meander. For a strongly subcritical branching process in a random environment $\{\xi_n\}$ with linear-fractional generating functions, we establish the convergence of the sequence $\{\xi_{[nt]},\ t\in(0,1)\mid \xi_n>0\}$ in the sense of finite-dimensional distributions to a process whose all cross-sections are independent and identically distributed. This research was supported by the Russian Foundation for Basic Research, grant 98–01–00524, and INTAS, grant 99–01317.
@article{DM_2001_13_1_a8,
     author = {V. I. Afanasyev},
     title = {Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {132--157},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a8/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment
JO  - Diskretnaya Matematika
PY  - 2001
SP  - 132
EP  - 157
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2001_13_1_a8/
LA  - ru
ID  - DM_2001_13_1_a8
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment
%J Diskretnaya Matematika
%D 2001
%P 132-157
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2001_13_1_a8/
%G ru
%F DM_2001_13_1_a8
V. I. Afanasyev. Limit theorems for an intermediately subcritical and a strongly subcritical branching process in a random environment. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 132-157. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a8/

[1] Afanasev V. I., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 9:3 (1997), 52–67 | MR

[2] Afanasev V. I., “Predelnye teoremy dlya umerenno dokriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 10:1 (1998), 141–157 | MR

[3] Kharris T. E., Teoriya vetvyaschikhsya sluchainykh protsessov, 1966, Mir, Moskva

[4] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12:1 (1975), 39–46 | DOI | MR | Zbl

[5] Kozlov M. V., “Ob asimptotike veroyatnosti nevyrozhdeniya kriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Teoriya veroyatnostei i ee primeneniya, 21:4 (1976), 813–825 | MR | Zbl

[6] Afanasev V. I., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretnaya matematika, 5:1 (1993), 45–58 | MR

[7] Durrett R. T., Iglehart D. L., Miller D. R., “Weak convergence to Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 117–129 | DOI | MR | Zbl

[8] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, Moskva, 1977 | MR