Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DM_2001_13_1_a3, author = {V. A. Voblyi}, title = {Some necessary conditions for a polynomial to be chromatic}, journal = {Diskretnaya Matematika}, pages = {73--77}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DM_2001_13_1_a3/} }
V. A. Voblyi. Some necessary conditions for a polynomial to be chromatic. Diskretnaya Matematika, Tome 13 (2001) no. 1, pp. 73-77. http://geodesic.mathdoc.fr/item/DM_2001_13_1_a3/
[1] Kharari F., Teoriya grafov, Mir, Moskva, 1973 | MR
[2] Ore O., Teoriya grafov, Nauka, Moskva, 1968 | MR
[3] Read R. C., “An introduction to chromatic polynomials”, J. Combin. Theory, 4 (1968), 52–71 | DOI | MR
[4] Wolf H. S., “Which polynomials are chromatic?”, Colloq. Intern. sulle Theorie Combinatorie, Rome, 1976, 247–256 | MR | Zbl
[5] Kotlyar B. D., “Ob odnom neobkhodimom uslovii khromatichnosti mnogochlena”, Kibernetika i sistemnyi analiz, 1998, no. 5, 176–178 | MR | Zbl
[6] Adam A. A., Broere J., “Chromatic polynomials of graphs in terms of trees”, J. Math. Phys. Sci., 27 (1993), 231–240 | MR | Zbl
[7] Linial N., “Craph coloring and monotone functions on posets”, Discrete Math., 58:1 (1986), 97–98 | DOI | MR | Zbl
[8] Riordan Dzh., Vvedenie v kombinatornyi analiz, IL, Moskva, 1963
[9] Prudnikov F. P., Integraly i ryady, Nauka, Moskva, 1981 | MR | Zbl