On traversing labyrinths by automata in $n$-dimensional space
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 121-137
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of traversing spatial labyrinths by automata is considered.
It is proved that there exists an automaton that makes one unremovable mark
(colour) on vertices of a labyrinth and traverses an arbitrary
$n$-dimensional rectangular labyrinth.
@article{DM_2000_12_4_a9,
author = {A. Z. Nasyrov},
title = {On traversing labyrinths by automata in $n$-dimensional space},
journal = {Diskretnaya Matematika},
pages = {121--137},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a9/}
}
A. Z. Nasyrov. On traversing labyrinths by automata in $n$-dimensional space. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 121-137. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a9/