On the number of rules needed for an automaton grammar to generate a finite language
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 99-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem on reconstructing the data communication protocol, on the base of the message traffic. Formally, this problem is reduced to the problem to synthesise a grammar, given the language which it generates. We give a bound for the number of rules needed for the automaton grammar to generate a language of the given finite cardinality.
@article{DM_2000_12_4_a7,
     author = {N. Yu. Demin},
     title = {On the number of rules needed for an automaton grammar to generate a finite language},
     journal = {Diskretnaya Matematika},
     pages = {99--108},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/}
}
TY  - JOUR
AU  - N. Yu. Demin
TI  - On the number of rules needed for an automaton grammar to generate a finite language
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 99
EP  - 108
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/
LA  - ru
ID  - DM_2000_12_4_a7
ER  - 
%0 Journal Article
%A N. Yu. Demin
%T On the number of rules needed for an automaton grammar to generate a finite language
%J Diskretnaya Matematika
%D 2000
%P 99-108
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/
%G ru
%F DM_2000_12_4_a7
N. Yu. Demin. On the number of rules needed for an automaton grammar to generate a finite language. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 99-108. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/

[1] Anichkin S. A., Belov S. A., “Protokoly informatsionno-vychislitelnykh setei”, Radio i svyaz, 1989, Moskva | Zbl

[2] Glushkov V. M., Tseitlin G. E., Yuschenko E. L., Algebra. Yazyki. Programmirovanie, Naukova dumka, Kiev, 1978 | MR | Zbl