On the number of rules needed for an automaton grammar to generate a finite language
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 99-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem on reconstructing the data communication protocol, on the base of the message traffic. Formally, this problem is reduced to the problem to synthesise a grammar, given the language which it generates. We give a bound for the number of rules needed for the automaton grammar to generate a language of the given finite cardinality.
@article{DM_2000_12_4_a7,
     author = {N. Yu. Demin},
     title = {On the number of rules needed for an automaton grammar to generate a finite language},
     journal = {Diskretnaya Matematika},
     pages = {99--108},
     year = {2000},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/}
}
TY  - JOUR
AU  - N. Yu. Demin
TI  - On the number of rules needed for an automaton grammar to generate a finite language
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 99
EP  - 108
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/
LA  - ru
ID  - DM_2000_12_4_a7
ER  - 
%0 Journal Article
%A N. Yu. Demin
%T On the number of rules needed for an automaton grammar to generate a finite language
%J Diskretnaya Matematika
%D 2000
%P 99-108
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/
%G ru
%F DM_2000_12_4_a7
N. Yu. Demin. On the number of rules needed for an automaton grammar to generate a finite language. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 99-108. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a7/

[1] Anichkin S. A., Belov S. A., “Protokoly informatsionno-vychislitelnykh setei”, Radio i svyaz, 1989, Moskva | Zbl

[2] Glushkov V. M., Tseitlin G. E., Yuschenko E. L., Algebra. Yazyki. Programmirovanie, Naukova dumka, Kiev, 1978 | MR | Zbl