Sojourn times in a finite set of states of Markov branching processes and the probabilities of extinction of a modified Galton--Watson process
Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a multi-type branching Galton–Watson process $\mathcal B$, we choose a finite set of states $S$. It is well known that the number of particles $\mu(t)$ at time $t$ in any non-trivial branching process tends with probability one to zero or infinity as $t\to\infty$. Let $\nu_i$ be the number of moments $t$ of discrete time when $\mu(t)$ is equal to the $i$th state of the set $S$. In the first section we prove that the generating function of the multidimensional distribution of $\nu_1,\nu_2,\dots,\nu_r$ is rational. In the second section, for the degenerate Markov branching process $\mathcal B_c$ with particles of one type we find the Laplace transform of the sojourn times $\tau_1,\tau_2,\dots,\tau_r$, or the times of occupation of the states of the set $S=\{1,2,\dots,r\}$. In the third section, we give a method to evaluate the extinction probabilities of a modification $\mathcal B^*$ of the branching process $\mathcal B$. This research was supported by the Russian Foundation for Basic Research, grants 99–0100012, 00–15–96136, and by INTAS–RFBR, grant 99–01317.
@article{DM_2000_12_4_a2,
     author = {B. A. Sevast'yanov},
     title = {Sojourn times in a finite set of states of {Markov} branching processes and the probabilities of extinction of a modified {Galton--Watson} process},
     journal = {Diskretnaya Matematika},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_4_a2/}
}
TY  - JOUR
AU  - B. A. Sevast'yanov
TI  - Sojourn times in a finite set of states of Markov branching processes and the probabilities of extinction of a modified Galton--Watson process
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 39
EP  - 45
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_4_a2/
LA  - ru
ID  - DM_2000_12_4_a2
ER  - 
%0 Journal Article
%A B. A. Sevast'yanov
%T Sojourn times in a finite set of states of Markov branching processes and the probabilities of extinction of a modified Galton--Watson process
%J Diskretnaya Matematika
%D 2000
%P 39-45
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_4_a2/
%G ru
%F DM_2000_12_4_a2
B. A. Sevast'yanov. Sojourn times in a finite set of states of Markov branching processes and the probabilities of extinction of a modified Galton--Watson process. Diskretnaya Matematika, Tome 12 (2000) no. 4, pp. 39-45. http://geodesic.mathdoc.fr/item/DM_2000_12_4_a2/

[1] Kharris T. E., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, Moskva, 1966

[2] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, Moskva, 1971 | MR

[3] Sevastyanov B. A., “Asimptoticheskoe povedenie veroyatnostei vyrozhdeniya ostanovlennykh vetvyaschikhsya protsessov”, Teoriya veroyatnostei i ee primeneniya, 43 (1998), 390–397 | MR | Zbl