Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations
Diskretnaya Matematika, Tome 12 (2000) no. 3, pp. 37-48

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria formulation of the well-known combinatorial problem to minimise a linear form over an arbitrary set of permutations of the symmetric group. We give bounds (in the Chebyshev metric) for the coefficients of the linear forms preserving the corresponding efficiency of an arbitrary solution that is Pareto-, Slater-, or Smale-optimal. We present some conditions guaranteeing that a permutation possessing the efficiency property is locally stable. The class of quasi-stable problems is described.
@article{DM_2000_12_3_a1,
     author = {V. A. Emelichev and V. G. Pokhil'ko},
     title = {Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations},
     journal = {Diskretnaya Matematika},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_3_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - V. G. Pokhil'ko
TI  - Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 37
EP  - 48
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_3_a1/
LA  - ru
ID  - DM_2000_12_3_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A V. G. Pokhil'ko
%T Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations
%J Diskretnaya Matematika
%D 2000
%P 37-48
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_3_a1/
%G ru
%F DM_2000_12_3_a1
V. A. Emelichev; V. G. Pokhil'ko. Analysis of the sensitivity of efficient solutions of a vector problem of minimizing linear forms on a set of permutations. Diskretnaya Matematika, Tome 12 (2000) no. 3, pp. 37-48. http://geodesic.mathdoc.fr/item/DM_2000_12_3_a1/