On recognizing labyrinths by automata
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 51-65
We consider the problem of existence of automata which recognize some rectangular labyrinths. We prove that there is no automaton, which recognizes simple rectangular labyrinths, what is not so for mosaic labyrinths. We describe an infinite class of $\pi$-labyrinths, which are not recognizable by automata.
@article{DM_2000_12_2_a3,
author = {B. Stamatovic},
title = {On recognizing labyrinths by automata},
journal = {Diskretnaya Matematika},
pages = {51--65},
year = {2000},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a3/}
}
B. Stamatovic. On recognizing labyrinths by automata. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 51-65. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a3/
[1] Kilibarda G., “Novoe dokazatelstvo teoremy Budakha–Podkolzina”, Diskretnaya matematika, 3:3 (1991), 135–146 | MR | Zbl
[2] Kudryavtsev V. B., Podkolzin A. S., Ushchumlich Sh., Vvedenie v teoriyu abstraktnykh avtomatov, Nauka, Moskva, 1985
[3] Kudryavtsev V. B., Aleshin S. V., Podkolzin A. S., Vvedenie v teoriyu avtomatov, Nauka, Moskva, 1985 | MR
[4] Kharari F., Teoriya grafov, Mir, Moskva, 1973 | MR