On the stability radius of a vector problem of linear Boolean programming
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a multicriteria Boolean programming problem with linear partial criteria. We give lower and upper attainable bounds of the radius of stability of the Pareto set in the case where both the coefficients of the vector criterion and the elements of the constraint matrix are subject to independent disturbances.This research was supported by the Foundation for Basic Research of Republic Byelarus, grant $\Phi$97–266.
@article{DM_2000_12_2_a1,
     author = {V. A. Emelichev and V. N. Krichko and D. P. Podkopaev},
     title = {On the stability radius of a vector problem of linear {Boolean} programming},
     journal = {Diskretnaya Matematika},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - V. N. Krichko
AU  - D. P. Podkopaev
TI  - On the stability radius of a vector problem of linear Boolean programming
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 25
EP  - 30
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/
LA  - ru
ID  - DM_2000_12_2_a1
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A V. N. Krichko
%A D. P. Podkopaev
%T On the stability radius of a vector problem of linear Boolean programming
%J Diskretnaya Matematika
%D 2000
%P 25-30
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/
%G ru
%F DM_2000_12_2_a1
V. A. Emelichev; V. N. Krichko; D. P. Podkopaev. On the stability radius of a vector problem of linear Boolean programming. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/

[1] Cergienko I. V., Kozeratskaya L. N., Lebedeva T. T.,, Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Naukova dumka, Kiev, 1995

[2] Kozeratskaya L. N., Lebedeva T. T., Sergienko I. V., “Issledovanie ustoichivosti zadach diskretnoi optimizatsii”, Kibernetika i sistemnyi analiz, 1993, no. 3, 78–93 | MR | Zbl

[3] Kozeratskaya L. N., Lebedeva T. T., Sergienko T. I., “Voprosy parametricheskogo analiza i issledovaniya ustoichivosti mnogokriterialnykh zadach tselochislennogo lineinogo programmirovaniya.”, Kibernetika, 68:3 (1988), 41–44 | MR

[4] Emelichev V. A., Kravtsov M. K., “Ob ustoichivosti v traektornykh zadachakh vektornoi optimizatsii”, Kibernetika i sistemnyi analiz, 1995, no. 4, 137–143 | MR | Zbl

[5] Emelichev V. A., Krichko V. N., “Ob ustoichivosti paretovskogo optimuma vektornoi zadachi buleva programmirovaniya”, Diskretnaya matematika, 11:4 (1999), 27–32 | MR | Zbl

[6] Leontev V. K., Mamutov K. Kh., “Ustoichivost reshenii v zadachakh lineinogo buleva programmirovaniya”, Zhurn. vych. matem. i matem. fiziki, 28:10 (1988), 1475–1481 | MR