On the stability radius of a vector problem of linear Boolean programming
Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 25-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a multicriteria Boolean programming problem with linear partial criteria.
We give lower and upper attainable bounds of the radius of stability of the Pareto set
in the case where both the coefficients of the vector criterion
and the elements of the constraint matrix are subject to independent disturbances.This research was supported by the Foundation for Basic Research of Republic Byelarus,
grant $\Phi$97–266.
@article{DM_2000_12_2_a1,
author = {V. A. Emelichev and V. N. Krichko and D. P. Podkopaev},
title = {On the stability radius of a vector problem of linear {Boolean} programming},
journal = {Diskretnaya Matematika},
pages = {25--30},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/}
}
TY - JOUR AU - V. A. Emelichev AU - V. N. Krichko AU - D. P. Podkopaev TI - On the stability radius of a vector problem of linear Boolean programming JO - Diskretnaya Matematika PY - 2000 SP - 25 EP - 30 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/ LA - ru ID - DM_2000_12_2_a1 ER -
V. A. Emelichev; V. N. Krichko; D. P. Podkopaev. On the stability radius of a vector problem of linear Boolean programming. Diskretnaya Matematika, Tome 12 (2000) no. 2, pp. 25-30. http://geodesic.mathdoc.fr/item/DM_2000_12_2_a1/