Limit theorems for the number of nonzero solutions of a~system of random equations over the field~$\mathrm{GF}(2)$
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 70-81
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the properties of the number $\nu$ of non-zero
solutions of system of random equations over $\mathrm{GF}(2)$ with the left-hand
sides which are products of expressions of the form $a_{t1}x_1+\ldots+a_{tn}x_n+a_t$ with
independent equiprobable coefficients. The right-hand
sides of the system are zeros. We derive inequalities for
the factorial moments of the random variable $\nu$ and necessary
and sufficient conditions of the validity of the Poisson limit
theorem for $\nu$.
The research was supported by the Russian Foundation for Basic Research,
grants 99–01–00012 and 96–15–96092.
@article{DM_2000_12_1_a5,
author = {V. G. Mikhailov},
title = {Limit theorems for the number of nonzero solutions of a~system of random equations over the field~$\mathrm{GF}(2)$},
journal = {Diskretnaya Matematika},
pages = {70--81},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a5/}
}
TY - JOUR
AU - V. G. Mikhailov
TI - Limit theorems for the number of nonzero solutions of a~system of random equations over the field~$\mathrm{GF}(2)$
JO - Diskretnaya Matematika
PY - 2000
SP - 70
EP - 81
VL - 12
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a5/
LA - ru
ID - DM_2000_12_1_a5
ER -
V. G. Mikhailov. Limit theorems for the number of nonzero solutions of a~system of random equations over the field~$\mathrm{GF}(2)$. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 70-81. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a5/