Matchings up to the permutations which form a Latin rectangle
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 24-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study limit distributions of random variables related to matchings, up to permutations, in a sequence of independent trials, provided that the set of permutations forms a Latin rectangle. We consider the triangular array scheme of independent trials.
@article{DM_2000_12_1_a2,
     author = {S. M. Buravlev},
     title = {Matchings up to the permutations which form a {Latin} rectangle},
     journal = {Diskretnaya Matematika},
     pages = {24--46},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a2/}
}
TY  - JOUR
AU  - S. M. Buravlev
TI  - Matchings up to the permutations which form a Latin rectangle
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 24
EP  - 46
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a2/
LA  - ru
ID  - DM_2000_12_1_a2
ER  - 
%0 Journal Article
%A S. M. Buravlev
%T Matchings up to the permutations which form a Latin rectangle
%J Diskretnaya Matematika
%D 2000
%P 24-46
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_1_a2/
%G ru
%F DM_2000_12_1_a2
S. M. Buravlev. Matchings up to the permutations which form a Latin rectangle. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 24-46. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a2/

[1] Zubkov A. M., Mikhailov V. G., “Predelnye raspredeleniya sluchainykh velichin, svyazannykh s dlinnymi povtoreniyami v posledovatelnosti nezavisimykh ispytanii”, Teoriya veroyatnostei i ee primeneniya, 19:1 (1974), 173–181 | MR | Zbl

[2] Buravlev S. M., “Povtoreniya s tochnostyu do perestanovok v posledovatelnosti nezavisimykh ispytanii”, Diskretnaya matematika, 11:1 (1999), 53–75 | MR | Zbl

[3] Sachkov V. N., Kombinatornye metody diskretnoi matematiki, Nauka, Moskva, 1977

[4] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 733–738

[5] Ambrosimov A. S., “Normalnyi zakon v skheme summ zavisimykh sluchainykh velichin, rassmotrennykh B. A. Sevastyanovym”, Teoriya veroyatnostei i ee primeneniya, 21:1 (1976), 184–189 | MR | Zbl