On the complexity of the realization of a linear function by formulas in finite Boolean bases
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 135-144
Voir la notice de l'article provenant de la source Math-Net.Ru
We completely describe the set of bases over which the complexity of realization of the function $x_1\oplus\ldots\oplus x_n$ is of order $n$. For all bases not belonging to this set, we obtain the lower bound for the
complexity of realization of the function $x_1\oplus\ldots\oplus x_n$, which is of the form $n^c$, where
$c>1$ and $c$ does not depend on $n$. Basing on this bound for complexity, we give a more simple proof of existence of an infinite (descending) sequence of Boolean bases.
The research was supported by the Russian Foundation for Basic Research, grant 99–01–01175, and also by FTP ‘Integration’, grant 473.
@article{DM_2000_12_1_a10,
author = {D. Yu. Cherukhin},
title = {On the complexity of the realization of a linear function by formulas in finite {Boolean} bases},
journal = {Diskretnaya Matematika},
pages = {135--144},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a10/}
}
TY - JOUR AU - D. Yu. Cherukhin TI - On the complexity of the realization of a linear function by formulas in finite Boolean bases JO - Diskretnaya Matematika PY - 2000 SP - 135 EP - 144 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a10/ LA - ru ID - DM_2000_12_1_a10 ER -
D. Yu. Cherukhin. On the complexity of the realization of a linear function by formulas in finite Boolean bases. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 135-144. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a10/