Convergence conditions for weighted branching processes
Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 7-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some aspects of the weighted branching processes and, in particular, consider convergence conditions for the processes being a certain analogue of the well-known condition on $X\ln X$ for ordinary branching processes and branching random walks on $\mathbb R$. The research was supported by the Russian Foundation for Basic Research, grant 99–01–00012, and by RFBR–NNIO, grant 98–01–04132.
@article{DM_2000_12_1_a1,
     author = {U. R\"osler and V. A. Topchii and V. A. Vatutin},
     title = {Convergence conditions for weighted branching processes},
     journal = {Diskretnaya Matematika},
     pages = {7--23},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_2000_12_1_a1/}
}
TY  - JOUR
AU  - U. Rösler
AU  - V. A. Topchii
AU  - V. A. Vatutin
TI  - Convergence conditions for weighted branching processes
JO  - Diskretnaya Matematika
PY  - 2000
SP  - 7
EP  - 23
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_2000_12_1_a1/
LA  - ru
ID  - DM_2000_12_1_a1
ER  - 
%0 Journal Article
%A U. Rösler
%A V. A. Topchii
%A V. A. Vatutin
%T Convergence conditions for weighted branching processes
%J Diskretnaya Matematika
%D 2000
%P 7-23
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_2000_12_1_a1/
%G ru
%F DM_2000_12_1_a1
U. Rösler; V. A. Topchii; V. A. Vatutin. Convergence conditions for weighted branching processes. Diskretnaya Matematika, Tome 12 (2000) no. 1, pp. 7-23. http://geodesic.mathdoc.fr/item/DM_2000_12_1_a1/

[1] Athreya K. B., Ney P., Branching Processes, Springer, New York, 1972 | MR | Zbl

[2] Asmussen S., Hering H., Branching Processes, Birkhäuser, Boston, 1983 | MR | Zbl

[3] Biggins J. D., “Martingale convergence in the branching random walk”, J. Appl. Probab., 14:1 (1997), 25–37 | DOI | MR

[4] Biggins J. D., Kyprianou A. E., “Seneta–Heyde norming in the branching random walk”, Ann. Probab, 25:1 (1977), 337–360 | MR

[5] Blackwell D, Dubins L. E., “A converse to the dominated convergence theorem”, Illinois J. Math., 7 (1963), 508–514 | MR | Zbl

[6] Cramer M., Rüschendorf L., “Convergence of a branching type recursion”, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 32 (1996), 725–741 | MR | Zbl

[7] Davies L., “A theorem of Deny with applications to characterization problems”, Lect. Notes Math., 861, 1981, 35–41 | MR | Zbl

[8] Davies L., Shimizu R., “On identically distributed linear statistics”, Ann. Inst. Statist. Math., 28 (1976), 469–489 | DOI | MR | Zbl

[9] Dub Dzh. L., Veroyatnostnye protsessy, IL, Moskva, 1956

[10] Durrett R., Liggett M., “Fixed points of the smoothing transformation”, Z. Wahrsch. Verw. Gebiete, 64 (1983), 275–301 | DOI | MR | Zbl

[11] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 1–2, Springer, Berlin, 1977–79 | MR

[12] Liu Q., “Sur une équation fonctionnelle et ses applications: une extension du théorème de Kesten–Stigum concernant des processus de branchement”, Adv. Appl. Probab., 29 (1977), 353–373 | DOI | MR

[13] Lyons R., “A simple path to Biggins' martingale convergence”, Classical and Modern Branching Processes, 1996, 217–222, Springer, Berlin | MR

[14] Rösler U., “A fixed point theorem for distributions”, Stoch. Proc. and their Appl., 42:2 (1992), 195–214 | MR | Zbl

[15] Rösler U., “The weighted branching process”, Dynamics of complex and irregular systems, Bielefeld Encount. Math. Phys., VIII, World Science Publishing, River Edge, 1993, 154–165 | MR

[16] Rösler U., “A fixed point equation for distributions”, Berichtsreihe des Mathematischen Seminars Kiel, 1998, 98–7

[17] U. Rösler, L. Rüschendorf, “The contraction method for recursive algorithms”, Algorithmica, 29:1-2 (2001), 3–33 | MR

[18] Shimizu R., “Solutions to a functional equation and its applications to some characterization problems”, Shankhya, Ser. A, 40 (1978) | MR | Zbl

[19] Vatutin V. A., Topchii V. A., “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, Teoriya veroyatnostei i ee primeneniya, 42 (1997), 21–34 | MR | Zbl

[20] Krasnoselskii M. A., Rutskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, Moskva, 1958

[21] Meier P. A., Veroyatnost i potentsialy, Mir, Moskva, 1973

[22] Shiryaev A. N., Veroyatnost, Nauka, Moskva, 1989 | MR

[23] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, Gostekhizdat, Moskva, 1948