Sign-invariant structures of matrices, and discrete models
Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 89-100
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the asymptotic behaviour of linear discrete systems
determined by the so called $NZ$-matrices. We describe the sign-structures
of such matrices (sign-invariant and pulsar) for which
a non-trivial equilibrium or a periodical behaviour, respectively,
are observed. We apply the sign-invariant matrices to analysis
of dynamics of non-linear non-autonomous models of competition.
@article{DM_1999_11_4_a7,
author = {V. G. Il'ichev and O. A. Il'icheva},
title = {Sign-invariant structures of matrices, and discrete models},
journal = {Diskretnaya Matematika},
pages = {89--100},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1999_11_4_a7/}
}
V. G. Il'ichev; O. A. Il'icheva. Sign-invariant structures of matrices, and discrete models. Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 89-100. http://geodesic.mathdoc.fr/item/DM_1999_11_4_a7/