An estimate for the exponent of some sets of nonnegative matrices
Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 79-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exponent of a set $\mathcal A$ of non-negative $k\times k$ matrices is a minimal $n$ such that for any sample with replacement $A_1,\dots,A_n\in\mathcal A$ all elements of the matrix $A_1\ldots A_n$ are positive. We obtain upper bounds of the exponent of some sets of matrices with the use of singular values of matrices. We also give an estimate of the exponent of a set of matrices obtained with the use of a generalized Kronecker product of matrices. These results are used for estimating the length of the covering of a group by a given set of generators.
@article{DM_1999_11_4_a6,
     author = {D. E. Efimov},
     title = {An estimate for the exponent of some sets of nonnegative matrices},
     journal = {Diskretnaya Matematika},
     pages = {79--88},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_4_a6/}
}
TY  - JOUR
AU  - D. E. Efimov
TI  - An estimate for the exponent of some sets of nonnegative matrices
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 79
EP  - 88
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_4_a6/
LA  - ru
ID  - DM_1999_11_4_a6
ER  - 
%0 Journal Article
%A D. E. Efimov
%T An estimate for the exponent of some sets of nonnegative matrices
%J Diskretnaya Matematika
%D 1999
%P 79-88
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_4_a6/
%G ru
%F DM_1999_11_4_a6
D. E. Efimov. An estimate for the exponent of some sets of nonnegative matrices. Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 79-88. http://geodesic.mathdoc.fr/item/DM_1999_11_4_a6/