Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees
Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that a random tree $T_n$ with $n$ vertices and $n-1$ edges is a generalized recursive one if either $n=1$, or $n>1$ and $T_n$ is the result of linking some $n$th vertex to some vertex of a random recursive tree $T_{n-1}$. The probability to choose a particular vertex is defined by some sequence $\{\alpha_i\colon \alpha_i>0\}_{i=1}^\infty$. We study the probabilities of some events related to common predecessors of vertices.
@article{DM_1999_11_4_a4,
     author = {D. A. Kuropatkin},
     title = {Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees},
     journal = {Diskretnaya Matematika},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_4_a4/}
}
TY  - JOUR
AU  - D. A. Kuropatkin
TI  - Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 58
EP  - 64
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_4_a4/
LA  - ru
ID  - DM_1999_11_4_a4
ER  - 
%0 Journal Article
%A D. A. Kuropatkin
%T Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees
%J Diskretnaya Matematika
%D 1999
%P 58-64
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_4_a4/
%G ru
%F DM_1999_11_4_a4
D. A. Kuropatkin. Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees. Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 58-64. http://geodesic.mathdoc.fr/item/DM_1999_11_4_a4/