Conditions for the uniqueness of the moment problem in the class of $q$-distributions
Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 48-57
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K_q$ be the class of probability distributions on the set
of non-negative integer powers of a number $q>1$ ($q$-distributions),
$\mathsf P=\{p_k=P(q^k),\ k=0,1,\ldots\}$ is a distribution from the class
$K_q$ which has the moments of all orders. It is shown that in order that
the distribution $\mathsf P$ is uniquely determined in the class $K_q$
by the sequence of its moments provided that
$p_k>0$, $k=0,1,\ldots$, it is necessary, and under the condition that
$$
\operatornamewithlimits{sup\,lim}_{k\to\infty} (p_kq^{\binom k2})^{1/k}\infty,
$$
sufficient, that
$$
\operatornamewithlimits{inf\,lim}_{k\to\infty} p_{2k}q^{\binom{2k}k}
=\operatornamewithlimits{inf\,lim}_{k\to\infty} p_{2k+1}q^{\binom{2k+1}{2}}=0.
$$ These results are applied in the study
of the limit distribution of the number of solutions of a system of random
homogeneous equations with equiprobable matrix of coefficients over
a finite local ring of principle ideals.
@article{DM_1999_11_4_a3,
author = {A. N. Alekseichuk},
title = {Conditions for the uniqueness of the moment problem in the class of $q$-distributions},
journal = {Diskretnaya Matematika},
pages = {48--57},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1999_11_4_a3/}
}
A. N. Alekseichuk. Conditions for the uniqueness of the moment problem in the class of $q$-distributions. Diskretnaya Matematika, Tome 11 (1999) no. 4, pp. 48-57. http://geodesic.mathdoc.fr/item/DM_1999_11_4_a3/