The law of large numbers for permanents of random stochastic matrices
Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of all $n\times n$ $(0,1)$-matrices with $r$ ones in each row, $2\le r\le n$. For a matrix $P$ chosen randomly and equiprobably from this class, we present sufficient conditions under which the law of large numbers for the permanent $\operatorname{per}P$ is valid in the triangular array scheme as $n\to\infty$ and the parameter $r=r(n)\to\infty$ so that $\sqrt{n}=o(r)$. A similar problem is solved for random $n\times n$ stochastic matrices whose rows are independent $n$-dimensional random variables which are identically distributed by the Dirichlet law with parameter $\nu$ under the condition that $n\to\infty$ and the parameter $\nu=\nu(n)>0$ varies so that $n\nu^2\to\infty$.
@article{DM_1999_11_3_a7,
     author = {A. N. Timashev},
     title = {The law of large numbers for permanents of random stochastic matrices},
     journal = {Diskretnaya Matematika},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_3_a7/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - The law of large numbers for permanents of random stochastic matrices
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 91
EP  - 98
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_3_a7/
LA  - ru
ID  - DM_1999_11_3_a7
ER  - 
%0 Journal Article
%A A. N. Timashev
%T The law of large numbers for permanents of random stochastic matrices
%J Diskretnaya Matematika
%D 1999
%P 91-98
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_3_a7/
%G ru
%F DM_1999_11_3_a7
A. N. Timashev. The law of large numbers for permanents of random stochastic matrices. Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 91-98. http://geodesic.mathdoc.fr/item/DM_1999_11_3_a7/