The law of large numbers for permanents of random stochastic matrices
Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 91-98
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the class of all $n\times n$ $(0,1)$-matrices with $r$ ones in each row, $2\le r\le n$. For a matrix $P$ chosen randomly and equiprobably from this class, we present sufficient conditions under which the law of large numbers for the permanent $\operatorname{per}P$ is valid in the triangular array scheme as $n\to\infty$ and the parameter $r=r(n)\to\infty$ so that $\sqrt{n}=o(r)$. A similar problem is solved for random $n\times n$ stochastic matrices whose rows are independent $n$-dimensional random variables which are identically distributed by the Dirichlet law with parameter $\nu$ under the condition that $n\to\infty$ and the parameter $\nu=\nu(n)>0$ varies so that $n\nu^2\to\infty$.
@article{DM_1999_11_3_a7,
author = {A. N. Timashev},
title = {The law of large numbers for permanents of random stochastic matrices},
journal = {Diskretnaya Matematika},
pages = {91--98},
year = {1999},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1999_11_3_a7/}
}
A. N. Timashev. The law of large numbers for permanents of random stochastic matrices. Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 91-98. http://geodesic.mathdoc.fr/item/DM_1999_11_3_a7/