Weakly implicative selector sets of dimension 3
Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 126-132
For an $n$-place Boolean function $\beta$, we define a class $K(\beta)$ of weakly $\beta$-implicatively selective sets, which are subsets of the set of natural numbers. The dimension of the class $K(\beta)$ is the number of essential variables of the function $\beta$. We describe, up to inclusion, all classes $K(\beta)$ of dimension 2 and 3, excepting one case.
@article{DM_1999_11_3_a10,
author = {A. N. Degtev and D. I. Ivanov},
title = {Weakly implicative selector sets of dimension~3},
journal = {Diskretnaya Matematika},
pages = {126--132},
year = {1999},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1999_11_3_a10/}
}
A. N. Degtev; D. I. Ivanov. Weakly implicative selector sets of dimension 3. Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 126-132. http://geodesic.mathdoc.fr/item/DM_1999_11_3_a10/