Weakly implicative selector sets of dimension~3
Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 126-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an $n$-place Boolean function $\beta$, we define a class $K(\beta)$ of weakly $\beta$-implicatively selective sets, which are subsets of the set of natural numbers. The dimension of the class $K(\beta)$ is the number of essential variables of the function $\beta$. We describe, up to inclusion, all classes $K(\beta)$ of dimension 2 and 3, excepting one case.
@article{DM_1999_11_3_a10,
     author = {A. N. Degtev and D. I. Ivanov},
     title = {Weakly implicative selector sets of dimension~3},
     journal = {Diskretnaya Matematika},
     pages = {126--132},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_3_a10/}
}
TY  - JOUR
AU  - A. N. Degtev
AU  - D. I. Ivanov
TI  - Weakly implicative selector sets of dimension~3
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 126
EP  - 132
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_3_a10/
LA  - ru
ID  - DM_1999_11_3_a10
ER  - 
%0 Journal Article
%A A. N. Degtev
%A D. I. Ivanov
%T Weakly implicative selector sets of dimension~3
%J Diskretnaya Matematika
%D 1999
%P 126-132
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_3_a10/
%G ru
%F DM_1999_11_3_a10
A. N. Degtev; D. I. Ivanov. Weakly implicative selector sets of dimension~3. Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 126-132. http://geodesic.mathdoc.fr/item/DM_1999_11_3_a10/