Threshold property for systems of equations in finite fields
Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 15-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of equations in $\operatorname{GF}(q)$ with respect to unknowns $x_1,\ldots,x_N$ $$ a_1^{(t)}x_{i_1(t)}+\ldots+a_r^{(t)}x_{i_r(t)}=b_t,\qquad t=1,\ldots, T, $$ where $i_1(t),\ldots, i_r(t)$, $t=1,\ldots,T$, are independent identically distributed random variables taking the values $1,\dots, N$ with equal probabilities, the coefficients $a_1^{(t)},\ldots,a_r^{(t)}$, $t=1,\ldots,T$, are independent identically distributed random variables independent of $i_1(t),\ldots,i_r(t)$, $t=1,\ldots,T$, and taking the non-zero values from $\operatorname{GF}(q)$ with equal probabilities, and $b_t$, $t=1,\ldots,T$, are independent random variables not depending on the left-hand side of the system and taking the values from $\operatorname{GF}(q)$ with equal probabilities. We denote by $A_r$ the matrix of the system. A critical set of rows of $A_r$ is defined in the same way as in the case of $\operatorname{GF}(2)$ but here a critical set contains a number of rows with weights from $\operatorname{GF}(q)$. We prove that the total number $S(A_r)$ of critical sets of the matrix $A_r$ has a threshold property. Let $N,T\to \infty$ and $T/N\to\alpha$. Then for any fixed integers $r\geq 3$ and $q\geq 3$ there exists a constant $\alpha_r$ such that $\mathsf E S(A_r)\to 0$ if $\alpha\alpha_r$, and $\mathsf E S(A_r)\to\infty$ if $\alpha>\alpha_r$. The research was supported by the Russian Foundation for Basic Research, grants 96–01–00338 and 96–15–96092.
@article{DM_1999_11_3_a1,
     author = {V. F. Kolchin},
     title = {Threshold property for systems of equations in finite fields},
     journal = {Diskretnaya Matematika},
     pages = {15--23},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_3_a1/}
}
TY  - JOUR
AU  - V. F. Kolchin
TI  - Threshold property for systems of equations in finite fields
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 15
EP  - 23
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_3_a1/
LA  - ru
ID  - DM_1999_11_3_a1
ER  - 
%0 Journal Article
%A V. F. Kolchin
%T Threshold property for systems of equations in finite fields
%J Diskretnaya Matematika
%D 1999
%P 15-23
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_3_a1/
%G ru
%F DM_1999_11_3_a1
V. F. Kolchin. Threshold property for systems of equations in finite fields. Diskretnaya Matematika, Tome 11 (1999) no. 3, pp. 15-23. http://geodesic.mathdoc.fr/item/DM_1999_11_3_a1/