Estimates for the local probabilities of convolutions of discrete distributions
Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 103-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behaviour of the maximum of local probabilities for sums of independent identically distributed random variables with finite number of possible values as the number of summands tends to infinity. We consider the poorly investigated cases where the summands have a distribution which is non-lattice or depends on the number of summands (an array scheme).
@article{DM_1999_11_2_a5,
     author = {A. B. Mukhin},
     title = {Estimates for the local probabilities of convolutions of discrete distributions},
     journal = {Diskretnaya Matematika},
     pages = {103--111},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_2_a5/}
}
TY  - JOUR
AU  - A. B. Mukhin
TI  - Estimates for the local probabilities of convolutions of discrete distributions
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 103
EP  - 111
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_2_a5/
LA  - ru
ID  - DM_1999_11_2_a5
ER  - 
%0 Journal Article
%A A. B. Mukhin
%T Estimates for the local probabilities of convolutions of discrete distributions
%J Diskretnaya Matematika
%D 1999
%P 103-111
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_2_a5/
%G ru
%F DM_1999_11_2_a5
A. B. Mukhin. Estimates for the local probabilities of convolutions of discrete distributions. Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 103-111. http://geodesic.mathdoc.fr/item/DM_1999_11_2_a5/