On the maximum of a critical branching process in a random environment
Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 86-102
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{\xi_n\}$ be a critical branching process in a random environment with linear-fractional generating functions. We demonstrate that, under some conditions, as $x\to\infty$, $$ \mathsf P\Bigl(\sup_n\xi_n>x\Bigr)\sim \frac{c_0}{\ln x},\qquad \mathsf P\biggl(\sum_{n=0}^\infty\xi_n>x\biggr)\sim \frac{c_0}{\ln x}, $$ where $c_0$ is a positive constant.
@article{DM_1999_11_2_a4,
author = {V. I. Afanasyev},
title = {On the maximum of a critical branching process in a random environment},
journal = {Diskretnaya Matematika},
pages = {86--102},
year = {1999},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1999_11_2_a4/}
}
V. I. Afanasyev. On the maximum of a critical branching process in a random environment. Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 86-102. http://geodesic.mathdoc.fr/item/DM_1999_11_2_a4/