Injective mappings of words that do not propagate distortions of letter omission type
Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 20-39
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A^*$ be the set of all words of finite length in an alphabet $A$. A complete description of all injective maps of the set $\Omega^*$ into the set $\Omega_1^*$ that do not multiply symbol skip errors is given. We assume that the alphabets $\Omega$ and $\Omega_1$ are finite.
@article{DM_1999_11_2_a1,
author = {M. M. Glukhov},
title = {Injective mappings of words that do not propagate distortions of letter omission type},
journal = {Diskretnaya Matematika},
pages = {20--39},
year = {1999},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1999_11_2_a1/}
}
M. M. Glukhov. Injective mappings of words that do not propagate distortions of letter omission type. Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 20-39. http://geodesic.mathdoc.fr/item/DM_1999_11_2_a1/