Injective mappings of words that do not propagate distortions of letter omission type
Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 20-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A^*$ be the set of all words of finite length in an alphabet $A$. A complete description of all injective maps of the set $\Omega^*$ into the set $\Omega_1^*$ that do not multiply symbol skip errors is given. We assume that the alphabets $\Omega$ and $\Omega_1$ are finite.
@article{DM_1999_11_2_a1,
     author = {M. M. Glukhov},
     title = {Injective mappings of words that do not propagate distortions of letter omission type},
     journal = {Diskretnaya Matematika},
     pages = {20--39},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1999_11_2_a1/}
}
TY  - JOUR
AU  - M. M. Glukhov
TI  - Injective mappings of words that do not propagate distortions of letter omission type
JO  - Diskretnaya Matematika
PY  - 1999
SP  - 20
EP  - 39
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1999_11_2_a1/
LA  - ru
ID  - DM_1999_11_2_a1
ER  - 
%0 Journal Article
%A M. M. Glukhov
%T Injective mappings of words that do not propagate distortions of letter omission type
%J Diskretnaya Matematika
%D 1999
%P 20-39
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1999_11_2_a1/
%G ru
%F DM_1999_11_2_a1
M. M. Glukhov. Injective mappings of words that do not propagate distortions of letter omission type. Diskretnaya Matematika, Tome 11 (1999) no. 2, pp. 20-39. http://geodesic.mathdoc.fr/item/DM_1999_11_2_a1/