The structure of optimal trajectories of a discrete deterministic scheme with discounting
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 100-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the family of problems on finding $$ \max_{i_1,\ldots,i_{T-1}}\sum_{k=0}^{T-1}\beta^ku(i_k,i_{k+1}) $$ for $i_0=j_0$, $i_T=j_T$, where $\beta$ is the discount factor ($\beta>0$, $\beta\ne1$); $i_k$, $k=0,1,\ldots,T$, are elements of a given finite set; $u$ is a function taking values in the space $\mathbb R\cup\{-\infty\}$. The number of steps $T$ and the boundary states $j_0,j_T$ are considered as parameters. We give a description of the structure of the optimal trajectories for sufficiently large number of steps $T$. A theorem on a representation of the value function is proved. A sufficient condition is given under which a given contour is not included into any optimal trajectory regardless of the value of $\beta$.
@article{DM_1998_10_3_a8,
     author = {V. D. Matveenko},
     title = {The structure of optimal trajectories of a discrete deterministic scheme with discounting},
     journal = {Diskretnaya Matematika},
     pages = {100--114},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a8/}
}
TY  - JOUR
AU  - V. D. Matveenko
TI  - The structure of optimal trajectories of a discrete deterministic scheme with discounting
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 100
EP  - 114
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a8/
LA  - ru
ID  - DM_1998_10_3_a8
ER  - 
%0 Journal Article
%A V. D. Matveenko
%T The structure of optimal trajectories of a discrete deterministic scheme with discounting
%J Diskretnaya Matematika
%D 1998
%P 100-114
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a8/
%G ru
%F DM_1998_10_3_a8
V. D. Matveenko. The structure of optimal trajectories of a discrete deterministic scheme with discounting. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 100-114. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a8/