The nondensity function and generalized Ramsey numbers
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 84-99
A graph $G$ possesses the $(p, q)$-property if each its subgraph with $p$ vertices contains an empty subgraph with $q$ vertices. The independence function $p(q,G)$ is equal to the least $p$ such that the graph $G$ possesses the $(p,q)$-property, $q\ge2$. We consider the independence function and generalized Ramsey numbers for various classes of graphs. This research was supported by the Russian Foundation for Basic Research, grant 96-01-01054.
@article{DM_1998_10_3_a7,
author = {V. A. Dol'nikov and O. P. Polyakova},
title = {The nondensity function and generalized {Ramsey} numbers},
journal = {Diskretnaya Matematika},
pages = {84--99},
year = {1998},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a7/}
}
V. A. Dol'nikov; O. P. Polyakova. The nondensity function and generalized Ramsey numbers. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 84-99. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a7/