The nondensity function and generalized Ramsey numbers
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 84-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ possesses the $(p, q)$-property if each its subgraph with $p$ vertices contains an empty subgraph with $q$ vertices. The independence function $p(q,G)$ is equal to the least $p$ such that the graph $G$ possesses the $(p,q)$-property, $q\ge2$. We consider the independence function and generalized Ramsey numbers for various classes of graphs. This research was supported by the Russian Foundation for Basic Research, grant 96-01-01054.
@article{DM_1998_10_3_a7,
     author = {V. A. Dol'nikov and O. P. Polyakova},
     title = {The nondensity function and generalized {Ramsey} numbers},
     journal = {Diskretnaya Matematika},
     pages = {84--99},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a7/}
}
TY  - JOUR
AU  - V. A. Dol'nikov
AU  - O. P. Polyakova
TI  - The nondensity function and generalized Ramsey numbers
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 84
EP  - 99
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a7/
LA  - ru
ID  - DM_1998_10_3_a7
ER  - 
%0 Journal Article
%A V. A. Dol'nikov
%A O. P. Polyakova
%T The nondensity function and generalized Ramsey numbers
%J Diskretnaya Matematika
%D 1998
%P 84-99
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a7/
%G ru
%F DM_1998_10_3_a7
V. A. Dol'nikov; O. P. Polyakova. The nondensity function and generalized Ramsey numbers. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 84-99. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a7/