Combinatorics of the interaction on plane lattices
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 73-83
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem on enumerating the events appearing on the edges of regular plane lattices under given interactions at the nodes. We investigate a simple case where the interactions are described by a $(0,1)$-matrix of size $4\times 4$. In particular, we study the asymptotic behaviour of the number of events as the linear sizes of the lattice tend to infinity and give estimates of the exponential growth of this number as functions of the matrix describing the interactions.This research was supported by the Russian Foundation for Basic Research, grant 97-01-00627, and by INTAS, grant 94-0469.
@article{DM_1998_10_3_a6,
     author = {V. N. Koshelev and S. I. Stasevich},
     title = {Combinatorics of the interaction on plane lattices},
     journal = {Diskretnaya Matematika},
     pages = {73--83},
     year = {1998},
     volume = {10},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a6/}
}
TY  - JOUR
AU  - V. N. Koshelev
AU  - S. I. Stasevich
TI  - Combinatorics of the interaction on plane lattices
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 73
EP  - 83
VL  - 10
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a6/
LA  - ru
ID  - DM_1998_10_3_a6
ER  - 
%0 Journal Article
%A V. N. Koshelev
%A S. I. Stasevich
%T Combinatorics of the interaction on plane lattices
%J Diskretnaya Matematika
%D 1998
%P 73-83
%V 10
%N 3
%U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a6/
%G ru
%F DM_1998_10_3_a6
V. N. Koshelev; S. I. Stasevich. Combinatorics of the interaction on plane lattices. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 73-83. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a6/