A polynomial algorithm for recognizing the membership of a function of $k$-valued logic realized by a polynomial in precomplete classes of self-dual functions
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 64-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Properties of polynomials modulo $k$ for self-dual
functions of $k$-valued logic are investigated (if $k$ is a prime number).
It is proved that there exists an algorithm which with polynomial time
complexity determines whether a function of $k$-valued logic, realized
by a polynomial modulo $k$, belongs to a precomplete class of self-dual
functions.
@article{DM_1998_10_3_a5,
author = {S. N. Selezneva},
title = {A polynomial algorithm for recognizing the membership of a function of $k$-valued logic realized by a polynomial in precomplete classes of self-dual functions},
journal = {Diskretnaya Matematika},
pages = {64--72},
publisher = {mathdoc},
volume = {10},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a5/}
}
TY - JOUR AU - S. N. Selezneva TI - A polynomial algorithm for recognizing the membership of a function of $k$-valued logic realized by a polynomial in precomplete classes of self-dual functions JO - Diskretnaya Matematika PY - 1998 SP - 64 EP - 72 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a5/ LA - ru ID - DM_1998_10_3_a5 ER -
%0 Journal Article %A S. N. Selezneva %T A polynomial algorithm for recognizing the membership of a function of $k$-valued logic realized by a polynomial in precomplete classes of self-dual functions %J Diskretnaya Matematika %D 1998 %P 64-72 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a5/ %G ru %F DM_1998_10_3_a5
S. N. Selezneva. A polynomial algorithm for recognizing the membership of a function of $k$-valued logic realized by a polynomial in precomplete classes of self-dual functions. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 64-72. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a5/