A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 131-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_n\}$ be a moderately subcritical branching process in a random environment with linear-fractional generating functions. We prove that, as $n\to\infty$, the sequence of stochastic processes $\{\ln\xi_{[nt]}/(\Delta \sqrt n),\ t\in [0,1]\mid \xi_n>0\}$, where $\Delta$ is some positive constant, converges in distribution to the Brownian excursion $\{W_0^+(t),\ t\in [0,1]\}$ in the space $D[0,1]$ with Skorokhod topology.
@article{DM_1998_10_3_a10,
     author = {V. I. Afanasyev},
     title = {A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {131--147},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 131
EP  - 147
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/
LA  - ru
ID  - DM_1998_10_3_a10
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment
%J Diskretnaya Matematika
%D 1998
%P 131-147
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/
%G ru
%F DM_1998_10_3_a10
V. I. Afanasyev. A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 131-147. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/