A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 131-147
Let $\{\xi_n\}$ be a moderately subcritical branching process in a random environment with linear-fractional generating functions. We prove that, as $n\to\infty$, the sequence of stochastic processes $\{\ln\xi_{[nt]}/(\Delta \sqrt n),\ t\in [0,1]\mid \xi_n>0\}$, where $\Delta$ is some positive constant, converges in distribution to the Brownian excursion $\{W_0^+(t),\ t\in [0,1]\}$ in the space $D[0,1]$ with Skorokhod topology.
@article{DM_1998_10_3_a10,
author = {V. I. Afanasyev},
title = {A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment},
journal = {Diskretnaya Matematika},
pages = {131--147},
year = {1998},
volume = {10},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/}
}
TY - JOUR AU - V. I. Afanasyev TI - A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment JO - Diskretnaya Matematika PY - 1998 SP - 131 EP - 147 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/ LA - ru ID - DM_1998_10_3_a10 ER -
V. I. Afanasyev. A functional limit theorem for the logarithm of a moderately subcritical branching process in a random environment. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 131-147. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a10/