On the strong stability of a vector trajectory problem of lexicographic optimization
Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

One type of stability of the lexicographic set in a vector trajectorial problem with partial criteria of the form minsum, minmax, and minmin in arbitrary combination is investigated.This research was partially supported by DAAD, Fundamental Researches Foundation of Belarus, and International Soros Science Education Program.
@article{DM_1998_10_3_a0,
     author = {V. A. Emelichev and R. A. Berdysheva},
     title = {On the strong stability of a vector trajectory problem of lexicographic optimization},
     journal = {Diskretnaya Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_3_a0/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - R. A. Berdysheva
TI  - On the strong stability of a vector trajectory problem of lexicographic optimization
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 3
EP  - 9
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_3_a0/
LA  - ru
ID  - DM_1998_10_3_a0
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A R. A. Berdysheva
%T On the strong stability of a vector trajectory problem of lexicographic optimization
%J Diskretnaya Matematika
%D 1998
%P 3-9
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_3_a0/
%G ru
%F DM_1998_10_3_a0
V. A. Emelichev; R. A. Berdysheva. On the strong stability of a vector trajectory problem of lexicographic optimization. Diskretnaya Matematika, Tome 10 (1998) no. 3, pp. 3-9. http://geodesic.mathdoc.fr/item/DM_1998_10_3_a0/