Fast enumeration of combinatorial objects
Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 101-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of enumerative encoding is of interest in combinatorics, information theory, and other fields of discrete mathematics. Presently, algorithms to enumerate permutations, combinations, etc., are known, which do not need an exponentially growing amount of memory. The encoding and decoding rates of these methods, which are considered to mean the number of operations on binary words, exceed $c n$, where $c$ is a constant and $n$ is the length of words to be enumerated. We suggest a new enumeration method whose encoding rate is $O(\log^c n)$, $c > 1$.This research was supported by the Russian Foundation for Basic Research, grant 96–01–00052.
@article{DM_1998_10_2_a7,
     author = {B. Ya. Ryabko},
     title = {Fast enumeration of combinatorial objects},
     journal = {Diskretnaya Matematika},
     pages = {101--119},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_2_a7/}
}
TY  - JOUR
AU  - B. Ya. Ryabko
TI  - Fast enumeration of combinatorial objects
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 101
EP  - 119
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_2_a7/
LA  - ru
ID  - DM_1998_10_2_a7
ER  - 
%0 Journal Article
%A B. Ya. Ryabko
%T Fast enumeration of combinatorial objects
%J Diskretnaya Matematika
%D 1998
%P 101-119
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_2_a7/
%G ru
%F DM_1998_10_2_a7
B. Ya. Ryabko. Fast enumeration of combinatorial objects. Diskretnaya Matematika, Tome 10 (1998) no. 2, pp. 101-119. http://geodesic.mathdoc.fr/item/DM_1998_10_2_a7/