On the maximal $t$-packing of a complete multipartite graph
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 73-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a formula for the maximal number of vertex independent copies of a complete graph with $t$ vertices packed as subgraphs into the complete $n$-partite graph with parts of sizes $m_1,\ldots,m_n$.
@article{DM_1998_10_1_a6,
     author = {S. G. Sal'nikov},
     title = {On the maximal $t$-packing of a complete multipartite graph},
     journal = {Diskretnaya Matematika},
     pages = {73--81},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a6/}
}
TY  - JOUR
AU  - S. G. Sal'nikov
TI  - On the maximal $t$-packing of a complete multipartite graph
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 73
EP  - 81
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a6/
LA  - ru
ID  - DM_1998_10_1_a6
ER  - 
%0 Journal Article
%A S. G. Sal'nikov
%T On the maximal $t$-packing of a complete multipartite graph
%J Diskretnaya Matematika
%D 1998
%P 73-81
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_1_a6/
%G ru
%F DM_1998_10_1_a6
S. G. Sal'nikov. On the maximal $t$-packing of a complete multipartite graph. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 73-81. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a6/