Limit theorems for a moderately subcritical branching process in a random environment
Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 141-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_n\}$ be a moderately subcritical branching process in a random environment with linear-fractional generating functions, $m_n$ be the conditional expectation of $\xi_n$ with respect to the random environment. We prove theorems on convergence of the sequence of random processes $$ \{\xi_{[nt]}/m_{[nt]},\,t\in(0,1)\mid \xi_n>0\} $$ as $n\to\infty$ in distribution, and of the initial and final segments of the random sequence $\xi_0/m_0,\xi_1/m_1,\ldots,\xi_n/m_n$ considered under the condition that $\{\xi_n>0\}$.
@article{DM_1998_10_1_a12,
     author = {V. I. Afanasyev},
     title = {Limit theorems for a moderately subcritical branching process in a random environment},
     journal = {Diskretnaya Matematika},
     pages = {141--157},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1998_10_1_a12/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Limit theorems for a moderately subcritical branching process in a random environment
JO  - Diskretnaya Matematika
PY  - 1998
SP  - 141
EP  - 157
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1998_10_1_a12/
LA  - ru
ID  - DM_1998_10_1_a12
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Limit theorems for a moderately subcritical branching process in a random environment
%J Diskretnaya Matematika
%D 1998
%P 141-157
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1998_10_1_a12/
%G ru
%F DM_1998_10_1_a12
V. I. Afanasyev. Limit theorems for a moderately subcritical branching process in a random environment. Diskretnaya Matematika, Tome 10 (1998) no. 1, pp. 141-157. http://geodesic.mathdoc.fr/item/DM_1998_10_1_a12/