A new equilibrium in cyclic games on graphs
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 94-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exists an equilibrium for stationary strategies in cyclic games where the game on vertices of a graph lasts until it reaches a cycle, and the payment of one player to the other equals the sum of the maximal and minimal costs of the edges of this cycle.
@article{DM_1997_9_4_a9,
     author = {V. N. Lebedev},
     title = {A new equilibrium in cyclic games on graphs},
     journal = {Diskretnaya Matematika},
     pages = {94--99},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a9/}
}
TY  - JOUR
AU  - V. N. Lebedev
TI  - A new equilibrium in cyclic games on graphs
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 94
EP  - 99
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_4_a9/
LA  - ru
ID  - DM_1997_9_4_a9
ER  - 
%0 Journal Article
%A V. N. Lebedev
%T A new equilibrium in cyclic games on graphs
%J Diskretnaya Matematika
%D 1997
%P 94-99
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_4_a9/
%G ru
%F DM_1997_9_4_a9
V. N. Lebedev. A new equilibrium in cyclic games on graphs. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 94-99. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a9/