A new equilibrium in cyclic games on graphs
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 94-99
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that there exists an equilibrium for stationary strategies in cyclic games where the game on vertices of a graph lasts until it reaches a cycle, and the payment of one player to the other equals the sum of the maximal and minimal costs of the edges of this cycle.
@article{DM_1997_9_4_a9,
author = {V. N. Lebedev},
title = {A new equilibrium in cyclic games on graphs},
journal = {Diskretnaya Matematika},
pages = {94--99},
year = {1997},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a9/}
}
V. N. Lebedev. A new equilibrium in cyclic games on graphs. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 94-99. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a9/