The total vertex separation number of a graph
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 86-91
Voir la notice de l'article provenant de la source Math-Net.Ru
For a graph $G$ we introduce a new graph invariant $\operatorname{sv}(G)$ which we name
the total vertex separation number. We demonstrate that the recognition problem consisting in checking whether or not $\operatorname{sv}(G)\le k$ for a given $G$ and a non-negative integer $k$
is NP-complete even for edge graphs. We consider the problem to calculate this invariant for the interval graphs.
In addition, the total vertex separation number of a tree is considered.
This research was supported by the program ‘Universities of Russia’.
@article{DM_1997_9_4_a7,
author = {P. A. Golovach},
title = {The total vertex separation number of a graph},
journal = {Diskretnaya Matematika},
pages = {86--91},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a7/}
}
P. A. Golovach. The total vertex separation number of a graph. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 86-91. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a7/