On the number of deadlock tests for closings of block circuits of parity counters
Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 32-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the approach suggested by V. N. Sachkov for analysis of asymptotic behaviour of the number of minimal $k$-block coverings of $n$-sets and for finding the limit distribution of the number of blocks in a random minimal covering, the asymptotics of the number of minimal tests checking the block circuits of parity functions for closings is obtained as the test length and the number of blocks in the circuit tend to infinity; the limit distribution of the length of such tests is also found.
@article{DM_1997_9_4_a3,
     author = {D. S. Romanov},
     title = {On the number of deadlock tests for closings of block circuits of parity counters},
     journal = {Diskretnaya Matematika},
     pages = {32--49},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DM_1997_9_4_a3/}
}
TY  - JOUR
AU  - D. S. Romanov
TI  - On the number of deadlock tests for closings of block circuits of parity counters
JO  - Diskretnaya Matematika
PY  - 1997
SP  - 32
EP  - 49
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DM_1997_9_4_a3/
LA  - ru
ID  - DM_1997_9_4_a3
ER  - 
%0 Journal Article
%A D. S. Romanov
%T On the number of deadlock tests for closings of block circuits of parity counters
%J Diskretnaya Matematika
%D 1997
%P 32-49
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DM_1997_9_4_a3/
%G ru
%F DM_1997_9_4_a3
D. S. Romanov. On the number of deadlock tests for closings of block circuits of parity counters. Diskretnaya Matematika, Tome 9 (1997) no. 4, pp. 32-49. http://geodesic.mathdoc.fr/item/DM_1997_9_4_a3/