The automaton permutation group $AS_n$ generated by elements of infinite order
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 117-124
Cet article a éte moissonné depuis la source Math-Net.Ru
For an arbitrary integer $n\ge2$ we consider the group $AS_n$, constituted by boundedly determinate functions of one variable defined by means of initial automata with finite number of states on the Moore diagram, with input and output alphabets $E_n=\{0,1,\dots,n-1\}$, which at each state $q$ realize the output function $\psi(q,x)$ equal to some permutation $f_q(x)$ on the set $E_n$; $f_q(x)$ is an element of the complete symmetric group $S_n$. For $AS_n$ we give explicit generating system of elements of infinite order.
@article{DM_1997_9_3_a9,
author = {V. V. Makarov},
title = {The automaton permutation group $AS_n$ generated by elements of infinite order},
journal = {Diskretnaya Matematika},
pages = {117--124},
year = {1997},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a9/}
}
V. V. Makarov. The automaton permutation group $AS_n$ generated by elements of infinite order. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 117-124. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a9/