Polynomial algorithms for computing the permanents of some matrices
Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 96-100
Let $B_n$ be the matrix whose columns are all $n$-dimensional non-zero Boolean vectors and let $B_{nk}$ be the matrix whose columns are all $n$-dimensional Boolean vectors with $k$ unities. We suggest polynomial with respect to $n$ algorithms to compute the permanents of these matrices and some related matrices. These algorithms are based on the generating functions for values of permanents of the matrices under consideration.
@article{DM_1997_9_3_a7,
author = {A. P. Il'ichev and G. P. Kogan and V. N. Shevchenko},
title = {Polynomial algorithms for computing the permanents of some matrices},
journal = {Diskretnaya Matematika},
pages = {96--100},
year = {1997},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DM_1997_9_3_a7/}
}
A. P. Il'ichev; G. P. Kogan; V. N. Shevchenko. Polynomial algorithms for computing the permanents of some matrices. Diskretnaya Matematika, Tome 9 (1997) no. 3, pp. 96-100. http://geodesic.mathdoc.fr/item/DM_1997_9_3_a7/